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Abstract

Response predictions in structural dynamics are in general very sensitive to random uncertainties associated with the

underlying predictive mathematical model. One way to capture parametric and model uncertainties consists in the

construction of a non-parametric probabilistic model, in which the reduced structural matrices are replaced by random

matrices. The uncertainties are introduced at a global level and controlled through one dispersion parameter each, for the

mass, damping and stiffness matrix.

In the present paper the role of the damping dispersion parameter is investigated, for the case in which the adopted non-

parametric model is calibrated with respect to an existing parametric model. It is shown that in the non-parametric model

the influence of the damping dispersion on the scatter in the frequency response is relatively small, if a calibration criterion

based on matrix norms is used.

A novel method for calibrating this non-parametric model is proposed, which enforces the same scatter of the frequency

response function (FRF) at the first resonance frequency, in the parametric and the non-parametric model. A case study

involving a satellite FE model shows that with this approach the FRF scatter of the non-parametric model reaches a level

similar to that of the parametric model used for its calibration.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The use of mathematical models of structures for the purpose of response predictions is always associated
with unavoidable, inherent uncertainties. Probabilistic models are a suitable means to capture random
uncertainties and to enhance the predictive quality. Such improvements are of great relevance for numerous
fields of engineering, such as aerospace engineering.

The uncertainties associated with the numerical model can be classified into parameter uncertainties and
model uncertainties [1]. The former relate to the parameters of the mathematical model; more specifically to
material parameters, such as the elasticity modulus or the mass density, and to geometrical parameters, such
as the cross-section dimensions of structural members. The random character attributed to the parameters of
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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the mathematical model is meant to mimic the scatter which is observed when these parameters are measured
(directly or indirectly) for each specimen of a set of samples. This scatter is in turn due to the variability in
the manufacturing conditions and processes and the inherent variability of the material micro-structure.
The uncertainty affecting these parameters can be accounted for by modelling these as random quantities,
i.e. by constructing a so-called parametric model of uncertainties (see e.g. Refs. [2–5]). Probability theory is
not the only tool for modelling this variability, but it is adequate in numerous situations of engineering
interest.

The one-of-a-kind, actual, physical structure which is realized and utilized in reality, such as the satellite
considered in this manuscript, is then viewed as a single realization. Clearly, the values of its parameters are
fixed for this one structure, however, they are unknown due to the lack of control over the above mentioned
causes of variability. With this parametric approach, the uncertainty associated with each of the parameters of
the model is accounted for explicitly. The uncertainty can thus be captured locally, down to a level
corresponding to the degree of resolution of the mathematical model.

Uncertainties, which have their origin at a level lower than the current degree of resolution, are often
referred to as model uncertainties [6,7,1]. They are hence related to the simplifications introduced in the
modelling process with the goal of decreasing the complexity of the model. Model uncertainties in structural
dynamics are currently receiving considerable attention, as documented by the execution of a recent
benchmark study organized by Sandia National Laboratories [8].

The non-parametric model of uncertainties introduced by Soize [9–11] has been proposed for structural
dynamics problems, in order to capture model uncertainties in addition to the parametric uncertainties. In this
non-parametric model, the uncertainties are introduced at a global level, using the reduced nominal numerical
model. The latter is obtained with the truncated modal basis of the full nominal model.

In context of an earlier study it has been observed [12] that responses obtained with this approach exhibit a
very low sensitivity of the predicted frequency response functions (FRF) to damping uncertainty, especially
for excitations in the low frequency range. This is a clearly distinct feature of the adopted non-parametric
model, compared to the parametric model, in which the damping parameters strongly influence the frequency
response. In particular, a significantly different sensitivity with respect to scatter in the damping has been
observed even if (i) the same mathematical model is used to construct the parametric and the used non-
parametric model, and (ii) the adopted non-parametric model is calibrated on the basis of the parametric
model [13].

The first objective of this paper is to quantitatively analyse the influence of damping uncertainty on the
frequency response in the adopted non-parametric and parametric approach in the context of two numerical
examples. For this purpose, first the effect of changing the damping dispersion level in the non-parametric
model is investigated, under the assumption of both deterministic and random mass and stiffness matrices
(Sections 3.2 and 4.2). This effect is also analysed in models with comparatively high nominal damping
(Section 4.3). Following the observation that the effect of scatter in the damping is significantly smaller in the
non-parametric model, compared to the underlying parametric model, a detailed analysis of the scatter in the
damping matrix entries, both in the parametric and the non-parametric model (Section 4.5), has been
performed.

The second objective of the paper consists in the development of a novel calibration procedure for the
damping dispersion parameter. In earlier publications the latter is controlled using a procedure which enforces
the agreement of the scatter magnitude of the damping matrices of the parametric and the non-parametric
model [14].

Recently, a methodology has been introduced for the estimation of the dispersion parameters on the basis of
experimental measurements of the frequency domain transfer functions. Thus far, the application of the
methodology has been performed under the simplifying assumption that all three dispersion parameters are
identical [15]. In this manuscript, an alternative procedure is proposed, with the aim of introducing the same
sensitivity of the frequency response to the dispersion of the damping, both in the non-parametric model and
the parametric model used for its calibration, with the main objective to obtain a better agreement of the non-
parametric and the underlying parametric model of uncertainties.

The investigations related to the above two objectives are performed in the context of two case studies,
namely a simply supported beam and a more complex satellite structural model.
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2. Method of analysis

2.1. Mathematical model

The mathematical model considered in this paper corresponds to a time-invariant damped dynamical
system, discretized with the finite element method. The resulting force excited, multi-degree-of-freedom system
is governed by the equation of motion, which for a harmonic excitation with angular frequency o leads to the
following matrix equation:

ð�o2 MþioDþKÞ uðoÞ ¼ fðoÞ, (1)

where M, D and K are the deterministic, symmetric and positive-semidefinite structural mass, damping, and
stiffness matrices, respectively. Furthermore, fðoÞ is the force vector at each frequency o within the considered
frequency band ½omin;omax�, and uðoÞ represents the vector of the complex displacements of each degree of
freedom (DOF), induced by the external force vector fðoÞ.
2.2. Parametric probabilistic approach

In the parametric probabilistic approach, the parameters of the mathematical model are modelled as
random variables. Consequently, the structural matrices in Eq. (1) can be viewed as functions of the set of
random parameters fX ig

L
i¼1. The latter can be collected in a random vector X ¼ XðyÞ, where y denotes a

sample in the sample space S and thus indicates the random nature of X. Hence, the deterministic matrices in
Eq. (1) are replaced by the random matrices MparðXÞ;DparðXÞ;KparðXÞ, where ‘‘par’’ stands for ‘‘parametric
model’’.

For large systems the matrix equation corresponding to Eq. (1) can be computed efficiently with a reduced
version of the equation,

ð�o2M
par
red þ ioDpar

red þ K
par
redÞQ

parðoÞ ¼FðoÞ, (2)

in which FðoÞ ¼ UT fðoÞ and M
par
red , D

par
red and K

par
red are the diagonal, random, reduced mass, damping and

stiffness matrices ðn� nÞ,

M
par
red ¼ UTMparU; D

par
red ¼ UTDparU; K

par
red ¼ UTKparU. (3)

In the above equation, U is an ðm� nÞ real matrix whose columns are the n|m eigenvectors Ua related to the
n lowest, strictly positive eigenvalues La ¼ o2

a, corresponding to the generalized eigenvalue problem,

KparUa ¼ LaM
parUa. (4)

It should be noted that the diagonal character of the damping matrix is only true if the n modes that are
included in the model have classical damping, i.e. if the unreduced structural model has a damping matrix
satisfying the Caughey commutativity condition.

In the above equations (2)–(4), the quantities U, K,M
par
red , D

par
red , K

par
red are functions of X, since they depend on

MparðXÞ, DparðXÞ and KparðXÞ. Therefore, also the solution vector of Eq. (2) is a function of X, i.e. QparðX;oÞ.
In contrast, the excitation is assumed to be deterministic, i.e. in the sequel the uncertainty is assumed to be
limited to the mass, stiffness and damping matrices.

Upon solution of Eq. (2) for QparðX;oÞ, the Cm-valued random vector UparðX;oÞ is reconstructed with the
corresponding modal basis

UparðX;oÞ ¼ UðXÞQparðX;oÞ. (5)

2.3. Non-parametric probabilistic approach

As mentioned in the Introduction, the non-parametric probabilistic model is an approach in which the
uncertainty associated with the mass, damping and stiffness matrices is introduced globally. The approach
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leads directly to a random matrix equation in the modal subspace

ð�o2M
np
redðdM Þ þ ioDnp

redðdDÞ þ K
np
redðdK ÞÞQ

npðoÞ ¼FðoÞ, (6)

where ‘‘np’’ stands for ‘‘non-parametric model’’.
Unlike the system matrices in Eq. (2), the matrices M

np
red, K

np
red and D

np
red in the above equation are full

matrices and are based on a particular probability model described in detail in Refs. [9–11]. The magnitude of
the scatter of the elements of these matrices is governed globally by a so-called dispersion parameter for each of
the matrices, i.e. by the parameters dM , dD and dK . Consequently, this approach is very different from the
parametric model of uncertainties, in which the uncertainties are modelled locally and then propagated to
the matrices in the modal subspace in Eq. (2), through the solution of the eigenvalue problem in Eq. (4) and
the modal reduction in Eq. (3).

Upon solution of Eq. (6) for QnpðoÞ, the Cm-valued random vector UnpðoÞ is reconstructed with the modal
basis of the nominal numerical model, denoted by the underline,

UnpðoÞ ¼ UQnpðoÞ. (7)

2.4. Calibration of the damping dispersion parameter

The identification of the damping dispersion parameter, dD, introduced in the previous section, can be
carried out using different methods (see Ref. [16]). In the following analysis, the calibration with respect to a
given parametric probabilistic model is discussed.

The calibration method adopted in Ref. [13] is based on the following expression:

dD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W

par
D ðnþ 1Þ

trðDredÞ
2
þ trðD2

redÞ

s
, (8)

where Dred denotes the nominal damping matrix in reduced form, n is the dimension of the reduced system and
in which W

par
D is given by

W
par
D ¼ EfkD

par
red �Dredk

2
F g, (9)

where kAk2F ¼ trðAAT
Þ.

As shown in two cases studies discussed in depth in the next sections, this identification leads to a damping
dispersion parameter that induces a scatter in the frequency response which is significantly smaller than the
scatter in the corresponding parametric model. In view of this fact, an alternative calibration method is now
introduced which tunes the dispersion parameter by comparing the scatter magnitude of the response, i.e. the
output, rather than that of the damping matrices, i.e. the input.

FRF-peak-based calibration of the damping dispersion parameter. The main idea underlying this novel
calibration procedure is the requirement that at the first eigenfrequency the scatter in the FRF of the non-
parametric model converges to that of the parametric model, where convergence is measured in terms of the
(approximate) PDF. The reasoning underlying this choice for the calibration criterion of the damping
dispersion parameter dD is closely related to the argument for calibrating the dispersion parameters of the
mass and the stiffness, dM and dK , by enforcing the same scatter in the first eigenfrequency, for both the
parametric and the non-parametric model [13]. More specifically, this reasoning is based on the observation
that in structural dynamics numerical models are generally constructed such that the model is particularly
robust with respect to model uncertainties around the first eigenfrequency.

In the following it is assumed that in the process of the calibration of the damping dispersion parameter, the
scatter of the mass and stiffness properties is neglected, both for the parametric and the non-parametric model.

Let the frequency responses of the quantity of interest, due to a harmonic excitation at the first
eigenfrequency o1, expressed by the vector fðo1Þ, be denoted by Y

par
1 and Y

np
1 for the parametric model and

the non-parametric model, respectively. The corresponding probability density functions (PDFs) of the
responses are denoted by pY

par
1

and pY
np
1
, respectively. It should be noted that pY

par
1

clearly depends on the
uncertainty model adopted for the damping parameters in the parametric probabilistic model.
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The functional JðdDÞ is then introduced as a measure of the difference between the two PDFs,

JðdDÞ ¼
kpY

np
1
ðdDÞ � pY

par
1
kL2

kpY
par
1
kL2

, (10)

where the norm kf kL2 is given by

kf kL2 ¼

Z
R

jf ðxÞj2 dx

� �1=2

. (11)

In Eq. (10) the dependence of the PDF of Y
np
1 , pY

np
1
, on the dispersion parameter dD is made explicit.

The identification of the damping dispersion parameter dD is then carried out by solving the following
minimization problem:

dD ¼ arg minJðdDÞ; 0pdDp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ 1

n0 þ 5

s
, (12)

where n0 is an integer less than or equal the dimension of the structural matrices, cf. Ref. [11].
Using Eqs. (10)–(12) for determining dD means that the dispersion parameter dD is tuned until the PDF of

the frequency response of the non-parametric model converges to that of the parametric model.
It should be noted that the minimization of the L2-norm of the differences of the two PDFs cannot enforce

agreement of the tails of the distributions. However, this is of secondary importance in the present manuscript,
since the analysis of low-probability events, i.e. reliability analysis, is not within the scope of the present paper.
3. Case study—beam model

3.1. Deterministic FE model

As a first example a beam model (see Ref. [15]) has been chosen for the analysis of the influence of the
damping dispersion parameter on the scatter of the FRFs obtained with the non-parametric probabilistic
approach. The simply supported, elastic beam shown in Fig. 1 has a length of 10m and the dimensions of the
cross section are 1:0� 1:5m. The excitation consists in a point load on the top surface in z-direction and the
response quantity of interest consists in the acceleration of the node indicated in Fig. 1 in the same direction.

The normal mode analysis of the nominal FE model is performed using the commercial FE code
MSC.Nastran [17]. The resulting eigenvalues and eigenmodes of the structure are then imported into
MATLAB [18], for the analysis with both the non-parametric and the parametric model, respectively.
z

yx

F( )

Observed node

Fig. 1. Finite element model of the beam [15].
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Fig. 2. Nominal structural response with numeration of peaks used for the following analysis.
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Damping model. In the present model, dissipation is modelled exclusively through modal damping, i.e. the
damping matrix of the mean reduced model, Dpar

red in Eq. (2) is diagonal and the diagonal entries are of the
form

D
par
redaa ¼ 2oaxa, (13)

where oa and xa are the a-th eigenfrequency and modal damping ratio, respectively. In the nominal model, the
modal damping ratios have been assumed to take a constant value of xa ¼ 0:02 for all modes. The frequency
response of the nominal model is depicted in Fig. 2; the most prominent peaks are circled and labelled, as they
will be referred to in the following analysis.
3.2. Influence of the damping dispersion on the frequency response scatter

In order to analyse the influence of the level of damping dispersion on the FRF scatter only uncertainties of
the damping matrix are taken into account and the mass and the stiffness matrix are modelled with their mean
(deterministic) values. A coefficient of variation (ratio of standard deviation over mean) of 20% is used for the
reference parametric damping matrix which leads to a non-parametric damping matrix characterized by a
damping dispersion parameter equal to dD ¼ 0:22, if the calibration criterion based on the agreement of the
damping matrix norm (see Eq. (8)) is used.

The probabilistic analysis of the FRF has been carried out both for the reference parametric model and the
corresponding non-parametric model, using Monte Carlo simulation. A convergence analysis has been carried
out in order to determine the necessary number of Monte Carlo simulations for obtaining reliable estimates of
the quantiles. The convergence analysis has been performed with respect to the FRF quantiles at the peaks
indicated in Fig. 2; the convergence of the quantiles at the first peak is shown in Fig. 3. Based on the
convergence analysis, a number of 1000 simulations is considered sufficient for the subsequent analysis of the
1%- and 99%-quantiles of the FRF peaks.

The confidence regions defined by the 1%- and 99%-quantiles of the acceleration due to an excitation in the
range of [5,300] Hz are shown both for the parametric approach (see Fig. 4) and for the non-parametric
approach (see Fig. 5). These two figures qualitatively show a significant difference in the magnitude of the
scatter around the peaks between the two approaches.

A quantitative comparison of the scatter of the FRF peaks is shown in Fig. 6, where the confidence regions
are delimited by the 1%- and 99%-quantiles, and in Fig. 7, where the confidence region delimited by the mean
values plus/minus one standard deviation is shown for each of the seven peaks marked in Fig. 2. In addition,
Table 1 lists the values of the standard deviations of the FRF peaks. The standard deviations of the FRF



ARTICLE IN PRESS

0 200 400 600 800 1000

46.913

46.914

46.915

46.916

46.917

46.918

46.919

number of simulations

ac
ce

le
ra

tio
n 

[d
B]

99%−Q (par.)
99%−Q (non−par.)
1%−Q (non−par.)
1%−Q (par.)

Fig. 3. Convergence analysis of the 1%- and 99%-quantiles of the second FRF peak obtained with the parametric ðCoVD ¼ 0:20Þ and
non-parametric approach ðdD ¼ 0:22Þ; mass and stiffness deterministic.
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Fig. 4. Confidence region of the FRF delimited by the 1%- and 99%-quantiles, parametric approach; mass and stiffness deterministic

ðCoVM ¼ CoVK ¼ 0:0Þ.
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Fig. 5. Confidence region of the FRF delimited by the 1%- and 99%-quantiles, non-parametric approach; mass and stiffness deterministic

ðdM ¼ dK ¼ 0:0Þ.
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Fig. 7. Confidence region of the FRF peaks delimited by the mean value plus/minus one standard deviation, parametric and non-

parametric approach; mass and stiffness deterministic.

Table 1

Comparison of the standard deviations of the FRF peaks obtained with the parametric and non-parametric approach.

Peak index Excitation frequency (Hz) Standard deviation (dB) (parametric) Standard deviation (dB) (non-parametric)

1 33.0 1.4752 0.2387

2 60.0 1.6331 0.2512

3 112.0 1.6735 0.2539

4 150.0 1.6614 0.2590

5 217.0 0.9442 0.1546

6 277.5 1.5683 0.2477

B. Goller, M.F. Pellissetti / Journal of Sound and Vibration 324 (2009) 690–711 697
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peaks obtained with the non-parametric approach are in the order of about 15% of the standard deviations
obtained with the parametric approach.

The shown results reveal in quantitative terms that the scatter of the FRF around the peaks obtained with
the non-parametric approach is significantly smaller to that of the FRF calculated with the parametric
approach. This behaviour is not fully consistent with the goal of capturing both model and parameter
uncertainties, in view of the fact that the FRFs of the parametric approach, which solely takes into account
parameter uncertainties, reveal a significantly higher scatter.

Based on this simple example a more complex example will be used in the next section in order to analyse
the influence of the level of damping dispersion on the FRFs.
4. Case study—satellite structure

4.1. Deterministic FE model

The second analysis of the influence of the damping uncertainty in a non-parametric probabilistic model is
carried out in the context of the INTEGRAL satellite of the European Space Agency (ESA) [13].

The finite element model of this structure is shown in Fig. 8 and involves approximately 120,000 DOFs. The
state of the structure is assumed to remain in the linear range throughout the intended use of the model.
Again, the normal mode analysis of the nominal FE model is performed using the commercial FE code
MSC.Nastran [17] and the results are then imported into MATLAB [18].

The excitation consists in a harmonic support motion of the satellite in the x-direction. The support motion
is implemented using the large-mass approach, i.e. by attaching an extremely large mass (greater by a factor of
109 than the satellite mass) and a correspondingly large excitation to the DOF at the interface between the
satellite and the support. The considered response quantity is the acceleration amplitude of the tip of one of
the two SAS-booms (SAS: Sun Acquisition Sensor), as marked in Fig. 8.

Damping model. In the present model, dissipation is modelled exclusively through modal damping as
described in the first example (see Eq. (13)). In the nominal model, the modal damping ratios have been
observed node

X

Y

Z

Fig. 8. Finite element model of the INTEGRAL satellite [13].
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Fig. 9. Nominal structural response with numeration of peaks used for the following analysis.
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assumed to take the values

xa ¼ 1:5% for f ap30Hz i.e. oap188:5, (14)

xa ¼ 2:5% for f a430Hz i.e. oa4188:5. (15)

The nominal structural response of the investigated node due to an excitation in the frequency range
[5, 100]Hz is shown in Fig. 9 with the numeration of the peaks that are investigated in the following analysis.
4.2. Influence of the damping dispersion on the frequency response scatter

4.2.1. Case 1: mass and stiffness dispersion included

In Ref. [13] a non-parametric model has been constructed for the above introduced satellite FE model. The
non-parametric model has been calibrated with respect to the parametric model. More specifically, calibration
consists in enforcing convergence of the PDF of the first eigenfrequency of the non-parametric model to that
of the parametric model. This has lead to the dispersion parameters dM ¼ 0:1422 for the mass matrix and
dK ¼ 0:1349 for the stiffness matrix [13].

In order to identify the number of simulations necessary to obtain stochastic convergence for the 1%- and
99%-quantiles of the FRF peaks, a convergence analysis is carried out. The convergence is analysed studying
the FRF peak quantiles, where the results of the second peak are shown in Fig. 10. The results reveal that 1000
simulations are sufficient for reliably estimating the quantiles.

In order to assess the influence of the damping dispersion parameter, dD, on the uncertain frequency
response, the FRF ensembles of the non-parametric model have been computed for different values of dD.
Three levels of the damping dispersion have been investigated: dD ¼ 0%, 20:91% and 41:66%.

Fig. 11 depicts the confidence regions of the FRF peak responses delimited by the 1%- and 99%-quantiles.
The abscissa corresponds to the peak index, with the corresponding excitation frequency f shown at the top of
the figure, whereas the ordinate corresponds to the logarithm of the acceleration amplitude Y at the examined
node, i.e. 20 log10kY ðoÞk.

While the case of dD ¼ 0% corresponds to deterministic damping in the parametric model, in which the
nominal damping ratios given by Eqs. (14) and (15) apply, the latter two levels of dD correspond to a
parametric model in which the modal damping ratios are log-normal random variables Xa, with the following
mean and coefficient of variation:

EfXag ¼ xa; CoVXa ¼ 0:20 for dD ¼ 0:2091, (16)
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EfXag ¼ xa; CoVXa ¼ 0:40 for dD ¼ 0:4166, (17)

where xa is given by Eqs. (14) and (15).
As one can observe in Fig. 11, the three confidence regions corresponding to very different levels of the

dispersion parameter dD are almost unchanged at the respective peak, as the maximum difference of the limits
is less than 1 dB for peak 6. This indicates the insensitivity of the FRF dispersion with respect to the damping
dispersion in the presence of mass and stiffness uncertainty (dispersion).
4.2.2. Case 2: mass and stiffness deterministic

Fig. 12 shows the influence of dD on the FRF quantiles if the mass and the stiffness properties (and hence
the corresponding matrices) are deterministic, i.e. if dM ¼ dK ¼ 0. In comparison to Fig. 11, the three bars of
the respective level of the damping dispersion differ remarkably in the upper frequency band, more specifically
in the range [50,100]Hz. In contrast, in the lower frequency range the differences between the various levels of
dD are still negligible. In other words, one can observe in this figure that in the low frequency range, namely
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mass and stiffness deterministic ðdM ¼ dK ¼ 0:0Þ.

0 0.02 0.04
20

25

30

35

40

45

50

55

60

δM = δK

ac
ce

le
ra

tio
n 

[d
B

]

δD = 0.0%

δD = 20.91%

δD = 41.66%

Fig. 13. Confidence region of FRF peak no. 6 delimited by the 1%- and 99%-quantiles, non-parametric approach for different levels of dD

with varying mass and stiffness dispersion.

B. Goller, M.F. Pellissetti / Journal of Sound and Vibration 324 (2009) 690–711 701
[5,35]Hz, the influence of the damping dispersion parameter is negligible even if the mass and stiffness
matrices are deterministic.
4.2.3. Case 3: mass and stiffness dispersion gradually increasing

Next, the influence of different levels of dD on the FRF quantiles is considered if the dispersion parameters
dM and dK are gradually increased. Fig. 13 depicts the confidence regions of the FRF at peak no. 6 (see Fig. 9)
for three different cases, namely dM ¼ dK ¼ 0:0, dM ¼ dK ¼ 0:02 and dM ¼ dK ¼ 0:04. It is shown that even a
moderate dispersion in the mass and the stiffness (controlled by the parameters dM ; dK ) has the effect that the
influence of dD on the FRF quantiles is negligible. More specifically, for dispersion parameters dM , dK equal to
0.02, one can still observe a perceptible influence of the damping dispersion. In contrast, for a value of dM , dK

of 0.04, the sensitivity of the FRF quantiles to dD has vanished entirely. These results indicate the significantly
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higher sensitivity of the FRF scatter to the dispersion of the mass and the stiffness, than to the dispersion of
the damping.
4.3. Influence of the damping dispersion parameter in models with higher nominal damping

As the influence of dD on the FRF quantiles can be expected to depend on the nominal (mean) value of the
damping, in the present section the influence of the nominal damping is studied. As mentioned in Section 4.1,
the dissipation is modelled exclusively by modal damping, with the nominal damping ratios specified
according to Eqs. (14) and (15).

A parameter study has been conducted, in which the nominal values of the modal damping ratio have been
assigned successively the values xnom ¼ 0:01; 0:05; 0:10 and 0.20. The dispersion parameters of the mass and
the stiffness matrix have been assigned the fixed values of dM ¼ 0:1422 and dK ¼ 0:1349.
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The corresponding results are shown in Figs. 14 and 15, where the confidence regions of the FRF peak nos. 2
and 6, respectively, are depicted. The figures indicate that with increasing nominal damping ratios, the influence
of the damping dispersion parameter on the magnitude of the scatter in the FRF does not change considerably.

However, it can be noted that with increasing magnitude of xnom the value of dD does have an effect on the
quantiles, in that for increasing dD the confidence region slightly shifts upwards. Fig. 16 confirms this trend by
showing the 1%-, 50%-quantiles and 99%-quantiles over the entire frequency range. For a given value of dD

the different quantiles can be identified by considering that—by definition—the lowest (highest) line
corresponds to the lowest (highest) quantile. As the figure indicates, in the frequency band above 60Hz (which
includes peak 6) the quantiles corresponding to a given probability level are shifted upwards, as dD increases.
4.4. Comparison of the influence of damping dispersion in the non-parametric and the parametric model

The observations gathered in the previous sections revealed a remarkable insensitivity of the FRFs of the non-
parametric model in the low-frequency domain, with respect to the level of the damping dispersion. This behaviour
greatly differs from that observed in the context of parametric models of uncertainties in structural dynamics.
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Indeed, in such models the FRFs are known to be very sensitive to the level of damping scatter in the low
frequency domain. To emphasize that this difference between the parametric and the non-parametric model is also
very pronounced in the present case study, Figs. 17 and 18 show the confidence regions of the structural response
of the parametric and non-parametric approach, for the case in which the mass and the stiffness matrices are
deterministic. A direct comparison of the FRF peak quantiles of the parametric model and the non-parametric
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Fig. 18. Confidence region of FRF in low frequency range f ¼ ½5; 35�Hz, delimited by the 1%- and 99%-quantiles, non-parametric

approach; mass and stiffness deterministic.
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Table 2

Comparison of the standard deviations of the first three FRF peaks, parametric and non-parametric approach.

Peak index Excitation frequency (Hz) Standard deviation (dB)

(parametric)

Standard deviation (dB)

(non-parametric)

1 16.25 0.5955 0.0778

2 20.50 6.6154 0.7982

3 22.00 1.6798 0.2301
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model is carried out in Fig. 19, where the confidence regions defined by the 1%- and 99%-quantiles of the first
three FRF peaks are depicted. The comparison of the standard deviations is listed in Table 2.

In the parametric model, the uncertainty in the damping is accounted for by modelling the modal damping
ratios as log-normal random variables with a CoV of 20%, i.e. according to Eq. (16). The damping dispersion
parameter of the used non-parametric model, dD ¼ 0:2091, corresponds to that obtained with Eq. (8), i.e.
using the calibration method proposed in Ref. [13]. It should be noted that in Fig. 19 CoVD denotes the
coefficient of variation of the modal damping ratios and corresponds to CoVXa in Eqs. (16) and (17).

The above referenced results show in quantitative terms that the non-parametric model exhibits a strongly
reduced scatter in comparison to the parametric model used for its calibration.

Impact of different choices for the PDF of the modal damping ratios. In the following, the question is
addressed whether the choice of the PDF of the damping ratios in the parametric model influences the FRF
variability in a significant way. If this was the case, one could conclude that the significant difference of the
sensitivity of the non-parametric and the parametric model w.r.t. damping dispersion is contingent on a
particular distribution model for the modal damping ratios in the parametric model.

The considered distributions of the modal damping ratios are shown in Fig. 20 for the case in which
CoVXa ¼ 0:20 and f ap30Hz (cf. Eqs. (14) and (16), respectively). Four different assumptions for the PDF of
the modal damping ratios in the parametric model have been considered: log-normal, correlated log-normal,
truncated-Gaussian and Gamma-distributed. An exponential correlation model has been used in the case of
the correlated log-normal PDF, with the form

rða; bÞ ¼ expð�0:05ja� bjÞ, (18)

where r denotes the correlation coefficient and a and b are the indices of the corresponding diagonal damping
entries (Fig. 21).

The mass and stiffness matrices have been assumed to be deterministic throughout Figs. 22–25, that show
the confidence regions of the first three FRF peaks of the parametric model in the low frequency range, where
the CoVXa assumes the values of 0, 20% and 40%. As one can observe, the confidence regions of the FRFs are
nearly identical in all four of the figures, showing that the choice of the PDF for the modal damping ratios is
rather uninfluential. Consequently, in the sequel the originally proposed log-normal distribution is used to
model the i.i.d. (independent, identically distributed) damping ratios.

4.5. Analysis of the damping matrix in the non-parametric approach

To further investigate the reasons for the limited influence of the damping dispersion parameter on the FRF
in the non-parametric model, the properties of the damping matrix of the non-parametric model are analysed
in this section.
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The structure of the damping matrix in the modal space is shown in Fig. 26. In this 3D-plot (‘‘city plot’’) the
a- and b-axes refer to the indices of the damping matrix entries, whereas the vertical axis denotes the value of
the corresponding damping matrix entry, D

np
redab. As opposed to the reduced model in the parametric

approach, the non-parametric model is characterized by full matrices in the modal space. However, Fig. 26
shows that the off-diagonal terms do not deviate considerably from zero and consequently the damping matrix
is dominated by its diagonal terms. Hence, the off-diagonal terms are not considered in the following analysis
of the damping matrix scatter.

Diagonal entries of the damping matrix. Next, the scatter of the diagonal components of the damping
matrices is analysed. Figs. 27 and 28 depict the values of the diagonal entries of the damping matrix of the
parametric and the non-parametric model, respectively, for five different random realizations (regular solid
lines), as well as for the deterministic damping matrix (bold solid line). The abscissa refers to the index a of the
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considered diagonal entry of the damping matrix; on the ordinate the value of the corresponding damping
matrix entry, Dpar

redaa and D
np
redaa, respectively, is shown (cf. Eqs. (13) and (6)). The plots refer to the case in

which the CoV of the damping ratios amounts to 20% (Eq. (16)). The two figures show that the diagonal
damping entries of the parametric model have a remarkably higher scatter than the diagonal damping entries
of the non-parametric model. Although a direct comparison of the non-parametric and parametric model is
not justified due to the different types of uncertainties modelled by the two approaches, the results indicate
that the scatter in the diagonal damping matrix entries is disproportionately low in the non-parametric model.

It is reasonable to expect that an increase of the damping dispersion parameter will lead to a more
pronounced scatter in the diagonal damping entries of the non-parametric model, and, as a consequence, of
the corresponding frequency response in the low frequency range. The next section will expand on this
statement in a quantitative fashion.
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4.6. Alternative calibration criterion for the damping dispersion parameter

4.6.1. Damping matrix-based calibration

As presented in Section 4.4, a non-parametric model, in which the damping dispersion level is determined on
the basis of Eqs. (8) and (9), will exhibit a very low scatter in the FRFs due to damping variability (see Fig. 19).

Since the FRFs of real structures are expected to be significantly influenced by the damping around the first
resonance frequencies, the FRFs predicted with this non-parametric model, in which the damping dispersion
parameter has been calibrated on the basis of the damping matrices, is not deemed fully satisfactory. Hence,
an alternative calibration criterion has been proposed in Section 2.4; the properties and the FRF predictions of
the associated non-parametric model will be addressed in the next subsection.
4.6.2. FRF-peak-based calibration

The novel calibration criterion introduced in this paper enforces the correspondence of the scatter in the
FRFs of the parametric and the non-parametric model, at the first eigenfrequency. For the investigated
numerical model the excitation frequency is therefore set to f ¼ 16:208Hz. In this case study, a moderate
scatter in the log-normally distributed modal damping ratios of the parametric model has been assumed,
namely with a CoV of 10%. The damping dispersion parameter, dD, of the non-parametric model has then
been calibrated according to Eqs. (10)–(12), where Y 1 corresponds to the acceleration amplitude of the SAS
boom indicated in Fig. 8.

The implementation of this procedure, i.e. the solution of the minimization problem in Eq. (12), has made
use of the MATLAB-function fminsearch [18], which finds the minimum of a function using the
Nelder–Mead simplex method. The termination tolerance on the function value, i.e. for JðdDÞ, has been set to
10�4, the tolerance on the parameter dD, has been set to 10�3.

After 25 iteration steps the damping dispersion parameter converged to dD ¼ 0:81125. Clearly, the obtained
value for dD is significantly larger than the one obtained with the calibration criterion based on the damping
matrix, which leads to dD � 10%.

The histograms of the acceleration FRF of the parametric and the non-parametric model, at f ¼ 16:208Hz,
are shown in Fig. 29. As confirmed by the graphs in the figure, the non-parametric model with dD ¼ 0:81125
results in an FRF scatter at the first eigenfrequency, which closely matches that of the parametric model.

To further validate the alternative calibration method, the FRF quantiles obtained with the parametric
model ðCoVXa ¼ 0:10Þ and with the resulting non-parametric model ðdD ¼ 0:81125Þ are compared directly in
the lower frequency band, i.e. in the range of [5,35]Hz (Fig. 30) by means of the confidence regions defined by
the 1%- and 99%-quantile of the first three FRF peaks. Clearly, the confidence regions of the parametric and
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the non-parametric model match reasonably well. It should be noted that this correspondence is obvious for
the first eigenfrequency, since this very correspondence represents the convergence criterion. However, the
good agreement carries over also to the next-higher eigenfrequencies.
5. Conclusions

In the present paper the role of the damping dispersion parameter in the adopted non-parametric model of
uncertainties in structural dynamics has been investigated. It has been shown that in this non-parametric
model the influence of the damping dispersion on the scatter in the FRF is relatively small, if the calibration
criterion based on the damping matrix norm is used.

A novel method for calibrating the non-parametric model has been proposed, which enforces the same
scatter of the FRF at the first resonance frequency, in the parametric and the non-parametric model,
respectively. The present case study shows that with this approach for the calibration, the FRF scatter of the
non-parametric model, around the resonance frequencies in the low frequency range, reaches a level similar to
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that of the parametric model used for its calibration. Since in a model with deterministic mass and stiffness
properties, as used here, the FRF scatter is exclusively due to the scatter in the damping, this correspondence is
deemed as a suitable indicator for the appropriate level of the damping dispersion parameter in the non-
parametric model.
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